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A theoretical and experimental analysis of beam dynamics and wave packet splitting of light in a periodi-
cally bent optical waveguide, a phenomenon recently observed [Phys. Rev. Lett. 94, 073002 (2005)] which is
the optical equivalent of adiabatic stabilization of atoms in intense and high-frequency laser fields, is presented
in the multimode operational regime. Inhibition of wave packet splitting is theoretically predicted and experi-

mentally observed for higher-order mode excitation.
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I. INTRODUCTION

Optical waveguides with a periodically curved axis have
been recently proposed [1] and experimentally demonstrated
[2] to provide an experimentally accessible and feasible labo-
ratory tool to study in an optical system the electronic wave
packet dynamics of an atom subjected to an intense and
high-frequency laser field, a subject which has attracted great
theoretical attention for more than two decades despite that
the lack of adequate superintense and high-frequency lasers
has set severe limits on experimental investigations (for a
recent review see [3]). The quantum-optical analogy stems
from the equivalence between the semiclassical Schrodinger
equation of the electronic wave function of a two-
dimensional (2D) atom in an external driving laser field,
written in the Kramers-Henneberger (KH) reference frame
the rest frame of a classical electron in the laser field—and
the paraxial wave equation for beam propagation in the pe-
riodically curved waveguide. The spatial propagation coordi-
nate along the waveguide plays, in the optical system, the
same role as the time variable in the laser-atom context,
whereas the external driving laser field is simulated by the
periodic bending of the waveguide. One of the most interest-
ing dynamical behaviors, first predicted by Pont, Gavrila,
and co-workers in the study of atomic hydrogen driven by a
high frequency and linearly polarized laser field, is the adia-
batic stabilization of the atom [4], which has been commonly
associated with a splitting of the ground state hydrogen wave
function [5]. In the high-frequency limit, where the electron
dynamics cannot follow the fast periodic oscillations of the
potential introduced by the laser field, wave packet splitting
can be easily understood as due to the dichotomous shape of
the cycle-averaged (dressed) atomic potential seen by the
electron in the KH reference frame; the electronic wave
function can be adiabatically driven from the ground state of
atomic hydrogen into the dichotomous shape by a slow turn
on of the driving laser pulse. A clear experimental observa-
tion of the related wave packet splitting of light in a periodi-
cally curved waveguide with adiabatic increase of the axis
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modulation depth has been recently reported in Ref. [2] and
explained on the basis of an adiabatic Y branch splitter
within a cycle-averaged waveguide model. Though the adia-
batic evolution of the ground-state (fundamental) mode to
the final dichotomous pattern was clearly shown in previous
works in close connection with similar electron wave packet
splitting under a smooth turn on of the laser pulse, the role
played by higher-order waveguide modes—corresponding, in
the atomic analogy, to excited-state electronic states—has
not yet been comprehensively investigated [6], despite that
experimental evidence of multimode effects was briefly men-
tioned in Ref. [2].

In this paper we investigate, both experimentally and
theoretically, light beam dynamics in a periodically curved
waveguide operating in the multimode regime, and provide
experimental evidence of adiabatic stabilization without
splitting of the light wave packet. Section II presents experi-
mental results on multimode effects observed in a periodi-
cally curved lithium-niobate optical waveguide. In Sec. III a
theoretical analysis of multimode beam dynamics is pre-
sented and used to clarify the experimental results. In par-
ticular, it is shown that the observation of adiabatic stabili-
zation without splitting may be related to the adiabatic
excitation of a higher-order weakly guided mode of the
cycle-averaged waveguide. Finally, in Sec. IV the main con-
clusions are outlined.

II. MULTIMODE BEAM DYNAMICS IN A PERIODICALLY
CURVED OPTICAL WAVEGUIDE: EXPERIMENTAL
RESULTS

The waveguide realized for our experiment—previously
described in Ref. [2] to study wave packet splitting—consists
of a graded-index channel waveguide, with a periodic axis
bending (see Fig. 1), fabricated by the annealed proton ex-
change (APE) technique in z-cut congruent lithium niobate
[7].

APE waveguides show positive refractive index change
solely for extraordinary wave propagation, so that only TM
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FIG. 1. (a) Microscope image (particular) of the periodically
bent lithium niobate waveguide. (b) Schematic of the full wave-
guide structure, comprising a first section of straight waveguide, an
adiabatic section where the waveguide bending amplitude A(z) in-
creases from zero to Ay=40 wm, and a final section of periodically
curved waveguide with constant bending amplitude.

modes are supported by the structure. The waveguide chan-
nel width and the refractive index change—for extraordinary
TM waves—have been chosen such that the waveguide turns
out to be single-mode under 1550-nm-wavelength excitation
[2]; however, at 1064 nm wavelength the waveguide is mul-
timode, supporting six TM modes. Specifically, the trans-
verse profile of the waveguide refractive index n(x,y), which
results from APE fabrication, can be expressed as n(x,y)
=n.=1 for y<0 (in the air) and n(x,y)=n,+Ang(x)f(y) for
y>0 (in the substrate), where n, is the extraordinary refrac-
tive index of the substrate, An<<n, is the peak index change,
g(x)=[erf((x+w)/D,)—erf((x—w)/D,)]/[2 erf(w/D,)] and
f(y)=exp(=y/Dy) are, respectively, the refractive index pro-
file parallel and perpendicular to the surface of the wave-
guide, 2w is the channel width, and D,, D, are the lateral
(x-direction) and in-depth (y-direction) diffusion lengths [8].
For parameter values w=5 pum, D,=2.4 um, D,=3.5 um,
and n,=2.156, An=0.0145 (at A\=1064 nm) which apply to
our waveguide, computation of waveguide eigenmodes by a
standard finite-difference mode solver method (see Sec. III C
for more details) shows that the waveguide can support, at
A=1064 nm, six TM,;, guided modes with (/,m)=(0,0),
(0,1), (1,0), (0,2), (1,1), and (2,0), where [ and m denote the
vertical (y-direction) and horizontal (x-direction) number of
zeros in the intensity mode profile, respectively (see Fig. 2).

The z axis of the waveguide is not straight but shows a
periodic bending, along the horizontal x direction, with a
period A=160 um and with a nonsinusoidal profile depicted
in Fig. 1(a). The amplitude of axis bending is slowly and
adiabatically increased from zero to a constant value A,
=40 um by a quarter sine-square envelope A(z), which is
shown Fig. 1(b) by a dashed curve. The total length of the
waveguide is 30 mm and comprises a 5-mm-long section of
straight waveguide, a 20-mm-long adiabatic section in which
the amplitude of the bending is increased up to 40 um, and a
final 5-mm-long section of bent waveguide with a constant
modulation amplitude. The waveguide was probed at A
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FIG. 2. Numerically computed intensity profiles of the TM
guided modes of the channel waveguide at A=1064 nm for param-
eter values which apply for the fabricated lithium-niobate
waveguide.

=1064 nm using a single-mode and linearly polarized
Nd:YAG laser by focusing its circular diffraction-limited
TEM,, Gaussian mode into the input face of the waveguide
through either a 25X or a 40X microscope objective; the
spot size radius of the focused Gaussian laser beam on the
input waveguide facet was estimated to be =3.2 um and
=2.0 um in the two cases, respectively. The polarization of
the incident beam was set orthogonal to the plane of the
waveguide in order to couple the TM modes supported by
the APE waveguide. The transverse light beam distribution at
the exit of the waveguide was imaged onto an infrared Vidi-
con camera (Hamamatsu model C2400-03), with a magnifi-
cation of =25, and analyzed using beam profiler software.
Since the first 5S-mm-long straight section of the waveguide
is multimode, different patterns at the output waveguide
facet were observed depending on the alignment condition of
the focusing beam onto the input waveguide channel. Figure
3 shows typical output beam patterns observed and recorded
on the Vidicon camera for the two different focusing micro-
scope objectives and for different vertical or horizontal shifts
of the focused laser beam with respect to the waveguide
channel. The patterns shown in Figs. 3(a) and 3(d) are typi-
cally observed using the 25X microscope objective, i.e., with
the broader focused beam, the latter pattern being observed
when the focused beam is vertically displaced toward the
substrate. The pattern shown in Fig. 3(b) can be observed
with both the 25X and 40X microscope objectives. Finally,
the pattern shown in Fig. 3(c) is observed only under tight
focusing (40X microscope objective) with a horizontal dis-
placement of the focused beam from the waveguide channel
center. It is clear that, by changing both the size of the fo-
cused beam and its vertical or horizontal displacement, dif-
ferent waveguide modes—or a linear combination of them
with weights depending on spatial overlapping integrals—
are excited in the first straight section of the waveguide, and
different intensity patterns are correspondingly observed at

026609-2



BEAM DYNAMICS AND WAVE PACKET SPLITTING IN...

-
-
—t

(a)| W

(o) | * -
] -

FIG. 3. Recorded intensity patterns of the light beam at the
output of the waveguide measured for different focusing conditions
(see text). The size of recorded images is 100 wm (horizontal)
X 20 pum (vertical).

the output plane. An explanation of the experimental mea-
surements will be given in the next section. Here we limit
ourselves to note that, interestingly, the patterns shown in
Figs. 3(a)-3(c) lead in any case to a wave packet splitting as
expected on the basis of the Y-branch shape for the cycled-
averaged potential ([2,5]; see also Fig. 4); conversely, the
pattern shown in Fig. 3(d) preferentially localizes light be-
tween the two potential wells, indicating that adiabatic stabi-
lization can occur without mode splitting. As we will discuss
in the next section, such a dynamics may be related to the
excitation of a weakly localized mode of a double-well po-
tential, which is a characteristic signature of the multimode
regime. In the atomic analogy and within the high-frequency
limit [5], the pattern shown in Fig. 3(d) would correspond to
a quasistationary higher-order Floquet state for the electronic
wave function which is preferentially localized between the
two wells of the cycled-average potential and its energy is
therefore close to the upper limit for ionization (see Sec.
III C and Fig. 7 for more details). In this state the atom is yet
adiabatically stabilized by the external field though stabiliza-
tion does not lead to wave packet splitting.

III. THEORETICAL ANALYSIS

The experimental observations reported in the previous
section clearly show that in the multimode regime beam dy-
namics along the periodically curved waveguide strongly de-
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FIG. 4. Behavior of the cycled-averaged potential V,,(x,y,z),
taken at y=0%, along the adiabatic section of the optical waveguide.
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pends on the mode excitation at the input waveguide facet. In
order to understand the experimental results and to highlight
the key role played by the adiabatic section of the wave-
guide, a detailed numerical analysis, based on both beam
propagation simulations and adiabatic analysis of waveguide
eigenmode evolution along the adiabatic section, have been
performed. In particular, we will explain the inhibition of
wave packet splitting shown in in Fig. 3(d) as due to the
excitation of a weakly localized mode of the cycle-averaged
waveguide.

A. Basic equations

Since the fractional power in the air region is very small
and the guiding refractive index step An is small, light
propagation along the waveguide can be well-described by a
scalar Helmholtz equation for the electric field amplitude
E(x,y,7) (see, for instance, [8]), namely:

PE
(3’_Z2 + ViE +k2n*(x = x0(2),y)E=0, (1)

where k=27/\ is the wave number (in vacuum) of the in-
jected light, V2L is the transverse Laplacian, and x,(z) is the
axis bending profile. Note that x,(z) can be expressed by the
product of the rapidly varying periodic function f(z), shown
in Fig. 1(a), with the slowly varying envelope A(z) shown in
Fig. 1(b), ie., xo(2)=A(2)f(z). After setting E(x,y,z)
=ix,y,z)exp(ikn,z) and introducing the paraxial approxi-
mation (|¢*/ z*| < kny|dl dz), from Eq. (1) one obtains for
the envelope  the following evolution equation:

J A2
a M
9z 2n

where we have set X=N/(2m)=1/k and V(x,y) E[nf
—-n?(x,y)]/(2n,) =n,—n(x,y). As previously noted in Refs.
[1,2], after the formal substitution z—¢, X—#, and n,—m,
Eq. (2) may be viewed as the semiclassical Schrodinger
equation, written in the KH reference frame, for a 2D elec-
tron in the binding potential V(x,y), subjected to an external
field linearly polarized along the x axis. As discussed in Ref.
[1], in the high-frequency modulation regime, i.e., for a short
modulation period of waveguide bending, the light field can-
not follow the rapid longitudinal variation of the refractive
index and beam dynamics is governed, at leading order, by a
cycled-averaged potential. The high-frequency limit leads to
the cycle-averaged wave equation [1]:

w__ X

V2 g+ V(x = x0(2),y) 4, (2)

s

i}(é’_z =— 2nxVi¢+ V(X y,2) ¥, (3)
where
1A
Vo (X,9,2) = KJ dz'V(x - A(2)f(").y) 4)
0

is the cycled-averaged potential. Note the dependence of V,,
on z, which comes from the slow ramp envelope A(z) in the
adiabatic section of the waveguide. The behavior of the
cycled-averaged potential V,,(x,y,z) at y=0* for the fabri-
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FIG. 5. Numerical simulations showing light propagation along
the waveguide at the y=0 plane (lower plots) and corresponding
intensity patterns at the output plane (upper plots) under different
waveguide excitation at the input plane: (a) TM,, excitation, (b)
TM,, excitation, (c) TM;, excitation, and (d) TM,, excitation.

cated waveguide is depicted in Fig. 4, which clearly corre-
sponds to an adiabatic Y branch waveguide. Though the sim-
plest average waveguide model, given by Eq. (3), may be too
crude to fully describe wave dynamics—mainly because it
does not account for discrete effects typical of segmented
waveguides [9] and neglects radiation losses which are con-
siderable in our experimental conditions [2]—it clearly pre-
dicts wave packet splitting as due to the existence of a Y
branch. In addition, for an average potential V,, slowly vary-
ing with propagation distance, in the absence of mode cross-
ing the well-known adiabatic theorem of quantum mechanics
[10] can be applied to Eq. (3) to study the beam evolution of
a given eigenmode. To explain the experimental patterns
shown in Fig. 3, we proceed both by a direct numerical
analysis of Eq. (2), using a beam propagation approach, and
by invoking the adiabatic theorem calculating the adiabatic
evolution of eigenvalues and eigenmodes for the cycled-
averaged Schrodinger equation (3).

B. Beam propagation: Numerical results

We numerically integrated Eq. (2) using a standard pseu-
dospectral split-step technique on a rectangular 140 um
X 80 wm integration domain with 256 X 256 spectral modes.
Absorbing boundary conditions were assumed to account for
radiation losses induced by waveguide bending [1]. In order
to highlight multimode effects on beam splitting dynamics,
we performed numerical simulations on beam evolution
when the initial straight waveguide is excited, at the input
plane, with one of its TM modes (see Fig. 2). Figure 5
shows, as an example, beam evolution (lower plots) and cor-
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responding output intensity patterns (upper plots) as obtained
when the waveguide is excited in its TMyy, TM,,, TM;;, and
TM,, modes. The evolution of beam amplitude |¢| in the
figures as a function of propagation distance z is taken at the
air-substrate interface, i.e., at y=0. The output intensity pat-
terns shown in Figs. 5(a)-5(c), leading to beam splitting ac-
cording to the Y-branch averaged potential (see Fig. 4), are
similar to the experimental ones reported in Figs. 3(a)-3(c),
respectively. Interestingly, waveguide excitation of the TM,,,
mode [Fig. 5(d)] does not lead, as one would expect, to beam
splitting as in other cases, instead a broad spot is observed
which resembles the one observed in the experiment [com-
pare Fig. 5(d) with Fig. 3(d)]. Note that the evolution of
beam amplitude at the air-substrate interface for this case,
shown in the lower plot of Fig. 5(d), indicates an apparent
beam splitting behavior, which, however, does not occur; this
is due to the fact that the broad central lobe, clearly visible in
the upper plot of Fig. 5(d), is localized in the substrate re-
gion, a few microns below the air-substrate interface. There-
fore in the top view, taken at y=0 and shown in the lower
plot of Fig. 5(d), the broad central spot is not visible. Since
the experimental pattern shown in Fig. 3(d) was observed for
the broader focusing laser spot vertically displaced from the
waveguide channel in the substrate, it is likely that inhibition
of beam splitting observed in the experiment is due to exci-
tation of the TM,, waveguide mode. This mode, indeed,
shows a three-spot pattern (see Fig. 2), with the most intense
and broad lobe being localized a few microns below the air-
substrate interface.

C. The average waveguide model: Adiabatic analysis

Beam propagation simulations under different waveguide
mode excitation (Fig. 5) satisfactorily reproduce the main
experimental results, highlighting the role of higher-order
modes on beam splitting dynamics. However, the explana-
tion of some of the observed effects, such as inhibition of
beam splitting [Figs. 3(d) and 5(d)], is nontrivial and de-
serves an additional investigation. Further physical insights
into the role played by higher-order modes into beam dy-
namics can be obtained by considering beam propagation in
the framework of the cycle-averaged waveguide limit [Eq.
(3)]. In this case, the periodically curved waveguide can be
simply viewed as a Y-branch waveguide, whose potential
V.(x,y,7)—shown in Fig. 4—varies slowly with the propa-
gation distance z. Exploiting the adiabatic theorem of quan-
tum mechanics for a slowly varying Hamiltonian [10], one
can infer that an initially excited eigenmode of the wave-
guide adiabatically evolves during propagation following the
slow change of the potential, provided that the corresponding
eigenvalue curve does not cross other eigenvalues of the
Hamiltonian. We numerically computed the 2D eigenmodes
and corresponding eigenvalues of the Hamiltonian
=—(X*/2n)V*+V,,(x,y,z), assuming z as a parameter, by
discretizing the operator 7 on a 160 um X 30 um rectangu-
lar domain using 400 X 150 discretization points in the hori-
zontal and vertical directions, respectively. The eigenvalues
of H are then used to evaluate the effective mode indices
n.s» which are defined as the mode propagation constants
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FIG. 6. (Color online) Adiabatic evolution of effective indices
for confined (guided) modes of the cycle-averaged Hamiltonian H
vs propagation distance. The dashed curve (in red color) corre-
sponds to the weakly bound mode with antiguiding properties. The
shaded area corresponds to unbounded modes (continuous spectrum
of H). The dotted curve (in blue color) corresponds to a bound
mode emerging from the continuum, which at the end of the wave-
guide is nearly degenerate with the adiabatically evolved TM,
mode.

normalized to the vacuum wave number k. Figure 6 shows
the numerically computed behavior of the effective mode
indices versus propagation distance z for bound modes (con-
tinuous curves), normalized to the refractive index n; of the
substrate; the shaded area corresponds to the region of radia-
tion modes (continuous spectrum). At z=0 there are six
guided modes; the intensity mode profiles have been previ-
ously shown in Fig. 2, and the modes are accordingly labeled
as in Fig. 2. At the end of the adiabatic section, there are
seven guided modes, formed by three couples of nearly de-
generate modes and by a weakly guided nondegenerate mode
(dashed curve, in red color, in Fig. 6). The intensity patterns
of such modes are shown in Fig. 6 as well. A few remarks are
in order to understand the adiabatic mode evolution shown in
Fig. 6 in connection with the experimental and numerical
results reported in previous sections.

(i) The lowest-order TMy, and TM,;; modes at z=0 adia-
batically evolve, without any crossing, towards a couple of
nearly degenerate modes after the adiabatic section of the
waveguide (z=20 mm). Such modes correspond to the usual
symmetric and antisymmetric fundamental supermodes of a
waveguide coupler [11], both showing a two-spot intensity
profile depicted in Fig. 6. Thus excitation of, e.g., the funda-
mental TM,, waveguide mode at z=0 leads to adiabatic
beam splitting, according to Figs. 3(a) and 5(a) [12].

(ii) Similarly to the previous case, the adiabatic evolution
of TM,, and TM;; modes leads to a couple of nearly degen-
erate modes at the end of the adiabatic waveguide section,
which correspond to symmetric and antisymmetric higher-
order supermodes of the splitter. Their intensity profile is
shown in Fig. 6 and is qualitatively similar to the patterns
shown in Figs. 3(b) and 5(b). Note that the curve for the
TM,, mode does not show any crossing. In view of the adia-
batic theorem, this clearly explains that initial excitation of
the waveguide with the TM, mode leads to beam splitting
with a two-lobe structure for each splitted spot.

(iii) The curve for the TM;, mode and a curve emerging
from the continuous spectrum (dotted curve, in blue color, in
Fig. 6) adiabatically evolve leading to a couple of nearly
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FIG. 7. (Color online) Qualitative behavior of the average po-
tential profile V,, vs x (thick solid curve) for y=07 at the end of the
adiabatic waveguide section (z=20 mm) and corresponding eigen-
values (energy levels) of the Hamiltonian H (horizontal lines). The
horizontal dashed curve corresponds to the energy level of the
weakly guided mode which confines light in between the two po-
tential wells.

degenerate higher-order supermodes of the splitter, whose
intensity profile—shown in Fig. 6—qualitatively resembles
the patterns observed in Figs. 3(c) and 5(c).

(iv) At the end of the adiabatic section there is a weakly
guided mode which emerges from the continuous spectrum
(red curve in Fig. 6). Such a mode, whose intensity pattern
clearly corresponds to the one observed in Figs. 3(d) and
5(d), is crossed by the curve of mode TM,, while falling into
the continuum. This crossing may be a way of excitation of
such a weakly guided mode and may hence explain the re-
sults shown in Figs. 3(d) and 5(d). In practice, different ex-
citation mechanisms, such as excitation of radiation modes
induced by waveguide bending and recoupling into the
weakly guided mode which deeply extends into the substrate,
may be possible as well. It is interesting to observe that,
contrary to mode dichotomy characteristic of the other super-
modes shown in Fig. 6, the weakly localized mode, marked
by the red curve in the figure, confines light in between the
two wells of the cycle-averaged potential (Fig. 4). Such an
antiguiding mechanism can be understood with the help of
Fig. 7, where a qualitative energy level diagram of the
Hamiltonian H at the plane z=20 mm is plotted along with
the profile of the cycle-averaged potential at that plane. From
the figure it can be seen that, as the three couples of nearly
degenerate symmetric and antisymmetric supermodes have
eigenvalues (energy levels) which cross the two wells, the
weakly localized mode has an eigenvalue (dashed horizontal
line, in red color) which is just below the upper level bound-
ary of continuous modes (ionization) but above the two po-
tential wells.

IV. CONCLUSIONS

In this work we have studied, both experimentally and
theoretically, beam dynamics in an optical waveguide with a
periodically curved axis, highlighting the important role
played by higher-order modes. Such a structure has been
recently proposed as an experimentally accessible system to
observe the exotic phenomenon of wave packet dichotomy
associated with stabilization of atoms in high-frequency and
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high-intensity laser fields [2]. In this work we have shown
that, in the multimode operational regime, the beam splitting
dynamics is more involved and, interestingly, light guiding
may occur without any splitting. A detailed numerical analy-
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sis, based on both beam propagation simulations and adia-
batic mode analysis in the high-frequency limit, has been
presented to explain the rather involved scenario observed in
the multimode regime.
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